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An oscillatory instability mechanism is identified for a horizontal liquid layer with
undeformable open surface heated from the air side. Although buoyancy and surface
tension gradients are expected to play a stabilizing role in this situation, we show that,
acting together, they may lead to the instability of the motionless state of the system.
The instability is a consequence of the coupling between internal and surface waves,
whose resonant interaction and resulting mode mixing are discussed. Predictions
amenable to experimental test are given together with a thorough analytical and
numerical study of the problem.

1. Introduction
Two wave motions are possible at the open surface of a liquid or at the interface

between two liquids. These are the capillary–gravity waves (Lamb 1945) and the
dilational waves (Lucassen 1968a, b). One mechanism capable of exciting such waves
is the Marangoni effect, i.e. surface stresses and subsequent flow motions due to
surface tension gradients along the surface or interface (Levich 1962; Lucassen
1968a, b). The Marangoni effect may be due to heat or (surfactant) mass transfer
across (i.e. transversally to) or along (longitudinally to) the surface or interface. When
such transport is induced by suitably imposed transverse gradients the possibility
exists of sustaining these waves past an instability threshold (Sternling & Scriven
1959; Reichenbach & Linde 1981; Takashima 1981; Levchenko & Chernyakov 1981;
Garcia-Ybarra & Velarde 1987; Chu & Velarde 1988, 1989).

Sternling & Scriven (1959) considered the case of two semi-infinite liquid layers
separated by an undeformable interface, and showed that overstability and wave
motions are possible, in particular when the heat transfer occurs out of the phase with
higher kinematic viscosity and thermal diffusivity. A liquid–air system satisfies this
criterion when the heating is imposed from the air side, which was indeed confirmed
by Reichenbach & Linde (1981), who generalized the analysis to finite-depth layers.
In both these works, the importance of convective heat transport in the gas phase
was pointed out. Moreover, with little or no surface deformation, the unstable modes
correspond to dilational waves, i.e. motions mostly along the interface. Hence, these
modes are also called longitudinal waves.
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Still for a liquid layer heated from above, but ignoring the influence of the over-
lying gas, Takashima (1981) considered the active role of surface deformation and
also located an overstability threshold. His numerical results were supported by the
subsequent analytical study of Garcia-Ybarra & Velarde (1987) who showed that
the energy input due to the Marangoni effect is indeed able to sustain transverse
capillary–gravity waves. They also pointed out the relevance of their findings for
variable and eventually microgravity conditions. Takashima (1981) did not discuss
dilational waves. At about the same time, Levchenko & Chernyakov (1981) con-
sidered both types of waves induced and sustained by the Marangoni effect when
heating a Bénard layer from the air side, and discussed the possible resonance between
these two wave modes. Later on, Chu & Velarde (1988, 1989) and Hennenberg et
al. (1992) also considered both kinds of waves, in connection with various thermal
and solutal Marangoni effects. Earnshaw & McLaughlin (1991, 1993) also considered
the resonance between both kinds of waves, though in a situation where they are
not sustained by the Marangoni effect. An extension of Levchenko & Chernyakov’s
analysis to the situation where the upper phase is a liquid has recently been provided
by Rednikov et al. (1998).

On the other hand, if a liquid layer open to air is heated from below, it is
known that steady cellular convection is possible past an instability threshold due to
either unstable stratification induced by buoyancy (Rayleigh 1916), or surface tension
gradients, hence the Marangoni effect (Koschmieder 1993). Pearson (1958) was the
first to unambiguously clarify theoretically the role of surface tension gradients in
Bénard experiments. He considered a liquid layer open to air heated from the bottom
side and neglected surface deformation. No oscillatory instability was found and
could not be expected for Pearson’s model problem, for either way of heating, as
shown by Vidal & Acrivos (1966). Nield (1964) considered the combined effect of
buoyancy and the Marangoni effect, heating a liquid layer from below, and still no
surface deformation. Oscillatory instability was not considered by Nield. Koschmieder
(1993) has provided a comprehensive account of these two mechanisms of steady,
cellular instability (see also Normand, Pomeau & Velarde 1977; Busse 1978; Velarde
& Normand 1980). Finally, it is known that if in a (not too shallow) Bénard layer the
heating is from the air side with gravity pointing vertically downwards, the fluid layer
may exhibit internal waves, i.e. damped oscillatory motions with the Brunt–Väisälä
frequency, as in the atmosphere or the ocean.

Thus, it appears clearly that when dealing with a Bénard layer open to air with
a deformable liquid–air interface, heating from below or above in the presence of
gravity, a rich variety of phenomena and instabilities is expected. Old and recent
experiments by Linde and coworkers have illustrated this wealth of phenomena
(Weidman, Linde & Velarde 1992; Velarde et al. 1995; Linde et al. 1997; Wierschem
et al. 1999). No author has yet discussed the problem in its full generality. There are
too many parameters and possible complex instability mechanisms. We shall not do
it here. Rather, in view of the known results, we shall stick as much as possible to a
realizable experiment, and rely on this to simplify the problem. In such an experiment,
the usual set-up would be a closed system where temperature is controlled below at
the solid support of the liquid and at a higher value at a solid plate above the air
gap overlying the liquid. For not too shallow liquid layers, surface deformation is
negligible, and if the air gap above the liquid is thin enough, it can be modelled by a
suitable Biot number. Then, an interesting and realistic problem is reduced to Nield’s
formulation with, however, the possibility of the appearance of internal waves due to a
stable density stratification. Justification of these simplifications will be given later on.
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What can be expected in Nield’s formulation that has been overlooked by earlier
authors? We shall show here that when heating a liquid layer from above, although
buoyancy merely allows damped internal waves and the Marangoni effect may not
be able to sustain dilational surface waves, yet the coupling of these two effects is
capable of triggering an instability allowing both (internal and dilational) waves to
be sustained past an instability threshold.

The text is organized as follows. In § 2 the linear stability problem is formulated.
In § 3 we provide numerical predictions about marginal stability conditions. Further
understanding of these results is obtained in § 4 through an asymptotic analysis for
high enough (in absolute value) negative Rayleigh and Marangoni numbers, which
allows to unambiguously distinguish between internal waves and dilational, or as
mentioned above, longitudinal surface waves and to study their resonance. Further
discussion of the results is given in § 5. A discussion of the possible role of both
surface deformation and the dynamics of the air gap is also provided there. Then, a
weakly nonlinear analysis is presented in § 6 to clarify the nature of the transition at
the bifurcation point. Finally, in § 7, we provide some conclusions.

2. Formulation of the linear stability problem
Consider a liquid layer of infinite horizontal extent (−∞ < x < ∞) and depth h,

subjected to a constant vertical temperature gradient β (β > 0 when heating from
below and β < 0 otherwise). The layer rests on a flat rigid bottom (z = 0). Its
upper free surface is assumed to be undeformable and open to air (Bénard layer).
Dimensionless quantities are defined using the following scales: h for length, h2/χ
for time, χ/h for velocity, µχ/h2 for pressure and βh for temperature, where µ is
the dynamic viscosity and χ is the thermal diffusivity. Assuming the Boussinesq
approximation to be valid (Chandrasekhar 1961; Perez-Cordon & Velarde 1975;
Velarde & Perez-Cordon 1976; de Boer 1984, 1986), the linearized equations and
boundary conditions for the amplitudes of the normal modes with growth rate Λ and
wavenumber k, exp(Λt+ ikx), are (see Nield 1964)

ikU +Wz = 0, (1)

Pr−1ΛU = −ikP +
(
Uzz − k2U

)
, (2)

Pr−1ΛW = −Pz + RT +
(
Wzz − k2W

)
, (3)

ΛT −W = Tzz − k2T , (4)

z = 0 : U = W = T = 0, (5)

z = 1 : W = Uz +MikT = Tz + BiT = 0, (6)

with

Pr ≡ ν

χ
, R ≡ αβgh4

νχ
, Bi ≡ κsh

κ
, M ≡ − dσ

dT

βh2

µχ

where U, W , P and T are (amplitudes of) horizontal and vertical components of
the velocity field, pressure and temperature disturbances, respectively. The subscript
z refers to the corresponding derivative, g is the value of gravity acceleration, ν
is the kinematic viscosity, α is the thermal expansion coefficient, κ is the thermal
conductivity, κs is a constant heat transfer coefficient at the open surface, σ is the
surface tension and dσ/dT is its variation with temperature (generally negative). Pr,
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R, Bi and M are Prandtl, Rayleigh, Biot and Marangoni numbers, respectively. The
second part in the interfacial boundary conditions (6) results from the tangential
stress balance (Marangoni effect), while the third one expresses the energy balance.

This is exactly the problem posed by Nield (1964), and corresponds well to standard
experiments for Bénard steady cellular convection (Koschmieder 1993). However, in
contrast with Nield, we here seek overstability (ImΛ 6= 0) at R < 0 and M < 0, which
in the standard case (α > 0, dσ/dT < 0) corresponds to heating the Bénard layer
from the air side or cooling it from below (β < 0).

3. Marginal conditions (ReΛ = 0) for oscillatory instability (ImΛ 6= 0).
Numerical results

First, we solve equations (1)–(4) with all boundary conditions (5), (6) but without
using the Marangoni stress condition in (6). Then, using the latter yields the solvability
condition in the form of a dispersion relation, which can be formally rewritten as M =
f(Λ, k, P r, Bi, R). With M real, we have in fact two relations M = Re f(Λ, k, P r, Bi, R)
and Im f(Λ, k, P r, Bi, R) = 0, allowing us to determine the growth rate ReΛ and the
frequency ω = ImΛ. As we look for the marginal states we set Λ = iω and solve
Im f = 0 for the critical frequency ω of expected oscillations, at constant k, Pr, Bi,
and R (this is done by numerically tracing the zeros of Im f = 0). Then, M = Re f
yields the corresponding critical value of the Marangoni number.

Two representations of the marginal curve (Marangoni number versus wavenumber)
will be used hereafter, according to whether we fix the Rayleigh number, or the
dynamic Bond number B ≡ R/M. Note that in the latter case, the complex solvability
condition M = f(iω, k, P r, Bi, B,M) is solved iteratively (Newton–Raphson method)
for M and ω. The first representation (fixed R) allows qualitative comparison with
the case of surface-tension-gradient-driven (Marangoni) instability in a layer with
deformable interface, when the Galileo number G = gh3/νχ is held fixed (see § 5.2).
The second representation is a more physical one, since B does not depend on the
temperature gradient, and is therefore fixed by the choice of a given set-up and liquid.

Examples of marginal curves at fixed Rayleigh number are shown in figure 1(a),
while the frequency along those states is plotted in figure 1(b). The solid lines labelled
1 and 2 correspond to R = −3 × 106 and R = −1.5 × 106, respectively. The point
marked 3 corresponds to R = −1.21×106. In all cases we have chosen, for illustration,
Pr = 6 and Bi = 0. For completeness, the broken lines correspond to results obtained
in § 5. The marginal curves appear in the form of a ‘bubble’ whose interior corresponds
to the region of instability. The bubble and its actual form depend crucially on the
fixed Rayleigh number. Indeed, as the absolute value of R is lowered, the bubble
becomes smaller and smaller and finally collapses to the point 3 at R = −1.21× 106.
This corresponds to the minimum value of −R allowing oscillatory instability. As the
absolute value of R is increased, the bubble grows and is shifted to higher absolute
values of M.

The general scenario (see also § 5) is that in principle, at R → −∞, a countable
number of bubbles should appear, corresponding to a countable number of vertical
modes (n = 1, 2, . . .). The bubble shown in figure 1 corresponds to the fundamental
mode (n = 1). Each mode has its own minimum value of −R, increasing with n. For
example, the second bubble (n = 2) emerges (from a point) only at R = −5.29× 107.
The third bubble (n = 3) appears at R = −4.68× 108, and so on.

The ‘bubble’ form of marginal curves in this first representation (M versus k, at
fixed R) deserves clarification. It does not imply that in an experiment, increasing the
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Figure 1. (a) Marginal stability curves, and (b) critical frequency, for the lowest unstable mode
at fixed Rayleigh number, Pr = 6 and Bi = 0: solid line 1 for R = −3 × 106, solid line 2 for
R = −1.5 × 106. The point 3 corresponds to R = −1.21 × 106, below which (in absolute value)
no marginal states exist. Broken lines show the asymptotic results (equations (28), (29), (22), (23),
n = 1, R = −3× 106, Pr = 6, Bi = 0, M = RB). The upper and lower curves correspond to surface
and internal waves, respectively. The dot-dashed line is obtained by formally plotting the surface
wave frequency (equation (23)) along the numerically found marginal states. Note that varying the
thermal gradient changes both Rayleigh and Marangoni numbers, and hence the figure must be
taken as a cross-section of a three-dimensional (M, k, R) surface.

temperature gradient one could de-stabilize and then re-stabilize the rest state. As an
increase of −M is always accompanied by an increase of −R (both are proportional
to the temperature difference), the upper part of the growing bubble is actually never
crossed (alternatively, figure 1 can be viewed in a three-dimensional perspective). This
is better seen using the more practical representation at fixed B = R/M, and not at
fixed R. Figure 2 shows the marginal curves (a) and the corresponding frequencies (b)
at fixed B and again Pr = 6 and Bi = 0 for B = 1.5; 2; 4; 6; 10; and 15. The broken
line is the locus of the minima as B is varied. With increasing B, the minimum shifts
from long waves (k → 0) to short waves (k → ∞). The lowest absolute value of the
critical Marangoni number is achieved for intermediate values of B, which represent
the optimal balance between the Marangoni and Rayleigh effects. B = 0.715 is the
lowest possible value, below which the marginal curves disappear at infinity with
k → 0. For the second mode (n = 2) the lowest possible Bond number is B = 6.44
(see also analytical results in § 5). Thus for B > 6.44 the corresponding marginal
curves also exist. However, they lie well beyond the range of figure 2 and thus are
not displayed. Similar behaviour occurs for the higher-order modes (n = 3, 4, . . .).

Nield’s type of marginal stability diagram (in the plane {−M,−R}) is represented
in figure 3(a). For a given B, the intersection of the straight line R = BM with the
marginal curve of figure 3(a) yields the critical temperature gradient for the onset
of instability. No more than one point of intersection is expected. The lower branch
of the marginal curve has an oblique asymptote with slope 0.715 (at large absolute
values of R and M), in accordance with the fact that for B < 0.715 the marginal
states do not exist. The critical wavenumber tends to zero along the lower branch,
and diverges to infinity along the upper branch. Note that the extrema of the bubble
in the fixed-R representation and the minima of the neutral curves in the fixed-B
representation are in fact one and the same point, belonging to the marginal curve of
figure 3(a). For illustration, figure 3(b) also contains the results for two higher-order
modes (n = 2 and n = 3).
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Figure 2. (a) Marginal stability curves, and (b) critical frequency, for the fundamental mode at
fixed dynamic Bond number (B ≡ R/M), Pr = 6 and Bi = 0: curve 1 B = 1.5, curve 2 B = 2, curve
3 B = 4, curve 4 B = 6, curve 5 B = 10, curve 6 B = 15. When B is varied, the minimum of the
marginal curve moves along the dashed line.
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Figure 3. Stability boundary in the plane {−M,−R} at Pr = 6 and Bi = 0. (a) The fundamental
mode (n = 1), (b) modes n = 1 (solid line), n = 2 (short-dashed line) and n = 3 (long-dashed line).

Figure 4(a–d) illustrates the influence of the Prandtl and Biot numbers on Nield’s
diagram (a), and on the variations with dynamic Bond number of critical Marangoni
number (b), wavenumber (c) and frequency (d). In particular, we observe that lowering
Pr (enhancing inertia) and Bi (reducing heat dissipation to the upper gas layer) yields
lower instability thresholds.

4. The limit of large negative Rayleigh and Marangoni numbers.
Internal and surface waves

To get a deeper understanding of the structure of the perturbation fields within
the liquid layer, associated with the wave modes described above, we now provide an
asymptotic analysis taking advantage of the expected high (absolute) values of the
Rayleigh and Marangoni numbers.

4.1. Dispersion relation

For high enough absolute values of Rayleigh and Marangoni numbers, the time
scales |αβg|−1/2 and |ρh2/((dσ/dT )β)|1/2, associated with possible internal and surface
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Figure 4. (a) Stability boundary in the plane {−M,−R}, (b) critical Marangoni number, (c)
wavenumber and (d) frequency, versus dynamic Bond number at various values of the Prandtl and
Biot numbers. The three pairs of curves correspond to Pr = 0.1, Pr = 6 and Pr = 20, marked
1, 2 and 3, respectively. Within each pair, the solid and broken lines are for Bi = 0 and Bi = 1,
respectively.

motions are much faster than the characteristic viscous and thermal time scales,
h2/ν and h2/χ (ρ is the mean density). These fast time scales yield corresponding
scales for velocity and pressure, which e.g. for buoyancy-induced internal motions are
|αβgh2|1/2 and |ραβgh2|, respectively. For convenience, in order to start the asymptotic
expansions with terms of order unity, we rewrite the system (1)–(6) using these scales.
Then we have

iku+ wz = 0, (7)

λu = −ikp+ ε2
(
uzz − k2u

)
, (8)

λw = −pz − T + ε2
(
wzz − k2w

)
, (9)

λT − w =
ε2

Pr

(
Tzz − k2T

)
, (10)

z = 0 : u = w = T = 0, (11)

z = 1 : w = uz − 1

Bε2
ikT = Tz + BiT = 0 (12)
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with

ε ≡
(
−Pr
R

)1/4

� 1, B ≡ R

M
,

where here lower-case symbols λ, u, w and p denote the same quantities as the
upper-case ones in (1)–(6). The second part of (12) is the Marangoni stress condition.

Then, in the leading-order approximation in ε, the action of the dissipative terms
in equations (8)–(10) is limited to boundary layers at the bottom and at the open
surface, while in the bulk the flow is inviscid. The smallness parameter ε is just of
order of the boundary layer thickness. We look for the solution separately in each
one of these three regions, subsequently using the appropriate matching procedure.
Accordingly, we introduce the stretched vertical variables

z̄ =
1− z
ε

, z̃ =
z

ε

and develop all components of the function f = (u, w, p, T ) in power series

f(z) = f0 + εf1 + · · · (13)

in the bulk;

f(z̄) = f̄0 + εf̄1 + · · · (14)

in the surface boundary layer; and

f(z̃) = f̃0 + εf̃1 + · · · (15)

in the bottom boundary layer.
The only exception is the horizontal velocity in the free-surface boundary layer,

which is sought in the form

u(z̄) = ε−1ū(−1) + ū0 + · · · , (16)

i.e. we start with the term of order ε−1. The justification of this choice will be provided
later on.

After substituting (13)–(16) into (7)–(12) we get a hierarchy of linear problems
corresponding to εn(n = −1, 0, 1, . . .). At each step a solvability condition must be
satisfied providing a dispersion relation.

In the bottom boundary layer, (7) yields that w̃0 is constant, while due to the second
boundary condition (11) this constant is zero. Then the matching condition between
w̃0 and w0 yields w0 = 0 at z = 0. Using this, the solution of (7)–(10) in the bulk is

p0 = c cosh

(√
λ2 + 1

λ2
kz

)
, u0 = − ik

λ
c cosh

(√
λ2 + 1

λ2
kz

)
,

w0 = −ck
λ

√
λ2

λ2 + 1
sinh

(√
λ2 + 1

λ2
kz

)
. (17)

In the open surface boundary layer we have

ū(−1) = c1 exp
(−√λz̄) (18)

where
√
λ is taken with positive real part.

Then according to (7)

w̄0 =
ikc1√
λ

[
1− exp

(−√λz̄)].
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The matching between w̄0 and w0 yields

c1 =
ic√
λ

√
λ2

λ2 + 1
sinh

(√
λ2 + 1

λ2
k

)
.

For the temperature field in the open surface boundary layer, using (10) and the
third boundary condition (12), we have

T̄0 =
ikc1

λ
√
λ

+
ikc1

λ
√
λ

Pr

1− Pr exp
(−√λz̄)− ikc1

λ
√
λ

Pr1/2

1− Pr exp
(−√λPr1/2z̄

)
.

As Bi is assumed to be of order unity, while the boundary layer is thin, the results
do not depend on the Biot number at this stage.

Finally, using the thermocapillary (Marangoni stress) boundary condition (12),
which is in fact the solvability condition in our scheme, we get the dispersion relation

sinh

(√
λ2 + 1

λ2
k

)(
λ2 +

k2

B(Pr1/2 + 1)

)
= 0. (19)

The solutions of (19) are

λ2
0 = − k2

k2 + π2n2
(n = 1, 2, . . .), λ2

0 = − k2

B(Pr1/2 + 1)
. (20)

The subscript 0 is used to recall that this is actually the leading-order result. Thus in
the leading-order approximation, λ is purely imaginary. We will discuss these solutions
in the next subsection. Here note only that without starting the expansion (16) for
the horizontal velocity in the upper boundary layer at the order ε−1, we would have
lost the second solution (20).

To obtain the real part of λ, it is necessary to consider the next-order correction. Let
us first consider the bottom boundary layer. Equation (8) becomes λũ0 = −ikp̃0 + ũ0z̃z̃ .
According to (9), p̃0 and p̄0 are constants, which are equal to the value of p0 at z = 0
and z = 1, respectively. Using the first boundary condition (11) as well as matching
to the zeroth-order solution in the bulk, we get

ũ0 = − ik

λ
c
[
1− exp

(−√λz̃)].
Then

w̃1 = −k
2

λ
cz̃ +

k2

λ
√
λ
c
[
1− exp

(−√λz̃)].
The matching condition between w̃0 + εw̃1 and w0 + εw1 provides the boundary

condition for w1 at z = 0. Then, the solution in the bulk, still inviscid in this
approximation, is

w1 = c
k2

λ
√
λ

cosh

(√
λ2 + 1

λ2
kz

)
.

Then, in the upper boundary layer we get

ū0 = c2 exp
(−√λz̄)− ik

λ
c cosh

(√
λ2+1
λ2 k

)
,

w̄1 = k2

λ
c cosh

(√
λ2+1
λ2 k

)
z̄ + ikc2√

λ

[
1− exp

(−√λz̄)].
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The matching condition between w̄0 + εw̄1 and w0 + εw1 yields

c2 = − ik

λ
c cosh

(√
λ2 + 1

λ2
k

)
.

Finally, calculating T̄1 in the upper boundary layer, using the thermocapillary
boundary condition (12), and taking into account, simultaneously, the two orders of
approximation, we get√

λ2

λ2 + 1
sinh

(√
λ2 + 1

λ2
k

)(
λ2 +

k2

B(Pr1/2 + 1)

)

−ε k√
λ

cosh

(√
λ2 + 1

λ2
k

)(
λ2 +

k2

B

2Pr1/2 + 1

Pr1/2(Pr1/2 + 1)

)

−ε k
2

√
λ

Bi

BPr1/2(1 + Pr1/2)

√
λ2

λ2 + 1
sinh

(√
λ2 + 1

λ2
k

)
= 0. (21)

This is an approximate dispersion relation, which we now analyse in detail.

4.2. Marginal stability

In the leading order, (21) yields the purely imaginary solutions (20). Rewriting them,
using now the thermal time scale as Λ2 = −ω2, we get

ω2 = −RPr k2

k2 + π2n2
(n = 1, 2, . . .) (22)

and

ω2 = −M Pr

Pr1/2 + 1
k2. (23)

Equation (22) yields the (Brunt–Väisälä) frequency of the internal waves in a stably
stratified inviscid liquid layer (Normand et al. 1977), while (23) accounts for the
frequency of dilational (or longitudinal) surface waves. Note that the former depends
only on R, while the latter is only function of M. The latter wave is genuinely
dissipative (Lucassen 1968a, b; Sternling & Scriven 1959; Levchenko & Chernyakov
1981; Chu & Velarde 1988, 1989). Recall that no surface deformation exists in our
Rayleigh–Marangoni problem. Fluid motion in the surface wave is accompanied by
an intense horizontal velocity field in the surface boundary layer (c1 6= 0 in (18)), while
for the internal wave c1 = 0, and the velocity field is of the same order of magnitude
everywhere.

The resonance between internal and dilational surface waves occurs when the
frequencies (22) and (23) are equal to each other. Thus at resonance

Bres(k, n, P r) =
k2 + π2n2

Pr1/2 + 1
(n = 1, 2, . . .). (24)

Proceeding to the next-order correction in (21), we represent the eigenvalue λ as

λ = λ0 + ελ1 + · · · (25)

where λ0 is defined by (20), corresponding to the internal and surface waves, respec-
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tively. Using (25) in (21) we find[
λ2

0 +
k2

B(Pr1/2 + 1)

]
λ1 + (λ2

0 + 1)
√
λ0

[
λ2

0 +
k2

B

2Pr1/2 + 1

Pr1/2(Pr1/2 + 1)

]
= 0 (26)

for the internal wave, and

2

√
λ2

0

λ2
0 + 1

sinh

(√
λ2

0 + 1

λ2
0

k

)
λ1 + k

√
λ0

Pr1/2 + 1

Pr1/2
cosh

(√
λ2

0 + 1

λ2
0

k

)

+BiP r−1/2
√
λ0

√
λ2

0

λ2
0 + 1

sinh

(√
λ2

0 + 1

λ2
0

k

)
= 0 (27)

for the surface wave.
The sign of Reλ1 determines whether the corresponding wave is damped or ampli-

fied. Imposing Reλ1 = 0 in (26), (27), we get the conditions of marginal stability:

Bint(k, n, P r) =
2Pr1/2 + 1

Pr1/2(Pr1/2 + 1)

[
k2 + π2n2

]
(n = 1, 2, . . .) (28)

for the internal wave, and

Bsf(k, n, P r) =
1

Pr1/2 + 1

[
k2 + s2(n)

]
(n = 1, 2, . . .) (29)

for the surface wave, respectively. Here s(n) are the solutions of the equation

cos(s) +
Bi

1 + Pr1/2

sin(s)

s
= 0

and, in particular, at Bi = 0, we get s(n) = π(n− 1/2).
Note that we always have Bsf < Bres < Bint. The instability associated with the

internal mode (Reλ1 > 0 in (26)) takes place for Bres < B < Bint. The surface mode
yields instability (Reλ1 > 0 in (27)) for Bsf < B < Bres. Thus, the regions of instability
in the ‘B versus k’ plane are confined by the inequalities Bsf < B < Bint (n = 1, 2 . . .).

4.3. Mode mixing at resonance

The divergence of λ1 when it is calculated with the help of equations (26) and (27) in
the vicinity of the resonance, demands a more refined analysis. It is clear that when
the coefficient of λ1 becomes too small, one must also take into account the quadratic
term (∼ λ2

1) when deriving an equation for λ1 from (21). The most general case of this
asymptotics corresponds to (B − Bres)/Bres ≡ ε1/2δ ∼ ε1/2 and λ1 ≡ ε−1/2λ̄1 ∼ ε−1/2.
Then we have

2

λ̄0

λ̄2
1 + δλ̄1 − (λ̄2

0 + 1)

√
λ̄0

Pr1/2 + 1

Pr1/2
= 0 (30)

where λ̄0 is chosen to coincide with λ0 for the internal wave (first equation (20)). Note
that the correction to the eigenvalue, although higher at resonance (ε1/2, while earlier
it was of order ε), still remains small.

Near resonance, the zeroth-order eigenvalues for the two modes (equation (20))
coincide, and a possible difference appears only in the first-order approximation.
Accordingly, (30) has two solutions for λ̄1. Note that, first, there are no marginally
stable states in the vicinity of the resonance point. Second, one of the solutions λ̄1

of (30) has always positive real part, while the other is negative. Consequently, the
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resonance occurs only when one of the two modes is unstable, while the other is
stable.

In the region |δ| � 1, λ̄0 + ε1/2λ̄1 should match with λ0 + ελ1 for the internal and
surface waves, taken at B → Bres, with λ0 given by (20) and λ1 obtained from (26),
(27). The asymptotics of one of the solutions of (30) at |δ| � 1 is

λ̄1 ≈ (λ̄2
0 + 1)

√
λ̄0

Pr1/2 + 1

Pr1/2
/δ + · · ·

for δ > 0, and

λ̄1 ≈ − 1
2
λ̄0δ − (λ̄2

0 + 1)

√
λ̄0

Pr1/2 + 1

Pr1/2
/δ + · · ·

for δ < 0.
Using the matching procedure described above, it follows that the mode correspond-

ing to this solution turns into the internal wave at δ > 0, |δ| � 1 while it becomes the
surface wave at δ < 0, |δ| � 1. At the same time, waves are amplified. One can also
show that just the opposite holds for the second solution of (30). Thus, near resonance
there is a continuous transition from the internal wave mode to the surface one, and
vice versa, and hence we have mode mixing. A salient characteristic of this transition
is a higher degree of damping/amplification. At resonance both modes resemble more
an internal wave mode, since their corresponding leading-order frequencies coincide
and, as a consequence, c1 = 0 in (18). Accordingly, neither of the two modes has an
intense horizontal velocity component in the surface boundary layer.

5. Discussion of results
5.1. Comparison of analytical and numerical results

Broken lines in figure 1(a) show the results (28) and (29), where the representation
of marginal curves at fixed Rayleigh number is used, for n = 1 and R = −3× 106 –
the same as for bubble 1 (M = RB). We observe that they approach the lower and
the upper sides of the bubble. However, this value of (−R) is not large enough, in
absolute value, to achieve a good quantitative agreement with the exact numerical
results. As R is increased in absolute value and the bubble grows, the agreement is
improved. Thus, at R → −∞, the lower and upper branches of the bubble tend to
the marginal curves for the internal and surface waves, respectively. The actual form
of the bubble depends crucially on the value given to the Rayleigh number. The
region of instability corresponds to the interior of the bubble. Qualitatively, at given
Rayleigh number, the instability is associated with the internal waves in the lower
part of the bubble (below the resonance curve), and with dilational surface waves in
the upper part of the bubble. This is exactly what happens in the limit R → −∞.

The fact that the boundary layer approach does not work for too long or too short
waves and cannot account for the left and right rounded parts that join upper and
lower parts of each bubble can be seen as follows. As k → 0, the frequencies (22)
and (23) both decay as ω ∼ k. At k ∼ ε2 ∼ |R|−1/2, the time scale for the internal
and surface oscillations is no longer faster than the viscous and thermal time scales.
For k → ∞, the viscous and thermal time scales decay faster (as k−2) than that for
surface and, moreover, internal waves, becoming of the same order as the latter at
k ∼ ε−1 ∼ |R|1/4. Thus the region of validity is O(|R|−1/2)� k � O(|R|1/4).

The results (28), (29) should be understood in the sense of the limit R → −∞.
They yield a countable number of bubbles (n = 1, 2 . . .) whose left and right rounded
zones have gone to k = 0 and k = ∞, respectively. For whatever large but finite (−R),
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only a finite number of bubbles exists. The higher is n, the higher should be R (in
absolute value) to achieve a satisfactory agreement with the numerical results for the
corresponding bubble.

The lower and upper broken lines in figure 1(b) correspond to the leading-order
frequencies of internal (equation (22)) and surface waves (equation (23)), respectively
(for n = 1 and R = −3× 106 – again the same as for bubble 1). The latter is drawn
along the marginal states (29). Alternatively, if we draw the surface wave frequency
along the numerically determined marginal states (the upper branch of bubble 1 in
figure 1a), we get the dot-dashed line (figure 1b), obtaining a better agreement with
the corresponding numerical result. We observe that at moderately large (−R) and
(−M) the asymptotic expressions for the frequencies (22) and (23) work better than
that for the marginal curves (28) and (29).

Returning to the representation at a fixed B, we introduce kres(B, n, P r), kint(B, n, P r)
and ksf(B, n, P r) as the roots of the equations Bres(k, n, P r) = B, Bint(k, n, P r) = B and
Bsf(k, n, P r) = B, respectively. Note that always kint < kres < ksf . If there is no
corresponding root, we will formally regard kres, kint or ksf as zero. The interval of
instability corresponds to kint < k < ksf . On the diagram of figure 2, k = kint and
k = ksf define the left and right vertical asymptotes of the marginal curve, respectively.
For the examples of figure 2 we find: (1) kint = 0, ksf = 1.65; (2) kint = 0, ksf = 2.11;
(3) kint = 0, ksf = 3.37; (4) kint = 0, ksf = 4.27; (5) kint = 2.11, ksf = 5.66; (6) kint = 3.41,
ksf = 7.02. Note that ksf 6= 0 appears starting from B > 0.715. This is in agreement
with the fact that B = 0.715 is the lowest possible value for oscillatory instability of
the mode n = 1 (for Pr = 6, Bi = 0), as discussed in § 3. Equation (29) also permits us
to calculate the lowest possible values of B for the higher-order modes. For example,
for n = 2 we have B = 6.44, and B = 17.9 for n = 3, and so on.

If kres is not zero, it splits the instability interval into two parts. The left and
the right parts correspond to instability of internal and surface waves, respectively.
Accordingly, in this case, the branch of the marginal curve approaching the left
asymptote corresponds to internal waves, while the branch at the right asymptote
corresponds to surface waves. Shown in figure 5 is the frequency drawn along the
marginal states. The solid line corresponds to the exact, numerical solution for the
example 4 of figure 2(b). The long-dashed curve is obtained by plotting the leading-
order surface wave frequency (23) along the numerically determined marginal curve 4
of figure 2(a), while the short-dashed curve is the corresponding one for the internal
wave frequency (22). The former becomes indistinguishable from the solid line on the
right, while the same occurs for the latter on the left, as expected.

The asymptotic theory developed in the previous section gives the asymptotes (i.e.
the interval of unstable wavenumbers in the limit of high absolute values of Rayleigh
and Marangoni numbers, R → −∞, M → −∞). If we add the next-order terms
(O(ε) = O(|R|−1/4) = O(|M|−1/4)) into (26), (27), we can in principle calculate how the
marginal curves tend to the asymptotes. However, calculation of the marginal curve on
the whole interval kint < k < ksf (and thus the calculation of the critical conditions)
lies beyond the possibilities of our asymptotic analysis, since otherwise we would
need to balance (empirically) terms of different orders in ε. This in fact shows that
asymptotically the minima correspond to R ∼ 1 and M ∼ 1, although they appear
to be numerically large in practice. At this level, we cannot speak about internal and
surface waves in the strict asymptotic sense, as done above. However, as (22), (23)
for the frequencies work well beyond the region where the overall asymptotic picture
(corresponding to the limit R → −∞, M → −∞) holds qualitatively, the possibility
exists of using these concepts in a wider (qualitative) sense.
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Figure 5. Comparison of exact and asymptotic dispersion relations for Rayleigh–Marangoni waves.
The solid line reproduces curve 4 of figure 2(b). The long- and short-broken lines are obtained by
plotting the frequencies of the internal (equation (22), n = 1) and surface (equation (23)) waves,
respectively, along the corresponding marginal curve of figure 2(a).

To illustrate the relevance of our findings to experiments, let us estimate the
critical temperature difference, βh, for the onset of oscillatory instability. Take typical
parameters of water: ρ ≈ 1 g cm−3, ν ≈ 10−2 cm2 s−1, χ ≈ 0.14×10−2 cm2 s−1, dσ/dT ≈
−0.17 dyn cm−1 K−1 and α ≈ 0.5×10−3 K−1 (at 50 ◦C). Then B ≈ 2.5h2. Take e.g. B ≈ 5,
which approximately corresponds to the lowest value of the critical Marangoni
number (figure 2a). Then h ≈ 1.4 cm. As Mc ≈ 3 × 105 (figure 2a), the critical
temperature difference, δT , is

δT ∼ 15 K (31)

which can be easily achieved in experiment (Linde et al. 1997; Wierschem et al. 1999).

5.2. Dilational versus capillary–gravity waves: the role of a deformable surface

When surface deformation is taken into account in a Bénard layer, overstability
has been predicted (Takashima 1981). Physically, this instability is associated with
the interaction between capillary–gravity and dilational surface waves (Levchenko
& Chernyakov 1981; Chu & Velarde 1988, 1989; Rednikov et al. 1998). Thus, it is
worth considering here the analogy between the coupling, resonance and mode mixing
in the two problems: capillary–gravity versus dilational waves, and internal versus
dilational waves. In both cases, a pair of high-frequency wave modes exists, one of
which is just the dilational or longitudinal surface wave with first-order dispersion
relation (23). The other wave is the internal one in the case treated here, (22), and
the capillary–gravity wave in the case of a layer with deformable interface. The latter
problem requires the definition of the Galileo number

G =
gh3

νχ
=
Bs

Cr
(32)
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where the static Bond number is

Bs =
ρgh2

σ
and the capillary (crispation) number

Cr =
ρνχ

σh
.

Here, we have considered a limiting case where the internal-wave time scale |αβg|−1/2

is much smaller than the viscous and thermal dissipation scales, and hence a high
enough Rayleigh number (in absolute value). At large Galileo number (which is
typical of most experiments with Bénard layers), the time scale of gravity waves
at the open deformable surface, (h/g)1/2, is also much smaller than the dissipative
time scales. In the same units as used for equations (22) and (23), and considering
Bs = O(1), the frequency of capillary–gravity waves is then given by

ω2 = Pr G k

(
1 +

k2

Bs

)
tanh (k). (33)

Comparing the dispersion relations (22), (23) and (33), it appears that the frequency
of dilational waves may not only become identical to that of internal waves (when
(24) holds, i.e. M ∼ R) for some k = O(1), but also to that of capillary–gravity
waves (when M ∼ G). Although the physical mechanisms underlying these waves are
different, features of mode mixing at resonance turn out to be similar (Rednikov et
al. 1998).

Nevertheless, in addition to the fact that internal–dilational and (capillary) gravity–
dilational resonance points are usually well separated (because G � R, see § 5.4),
some qualitative differences are also expected. Among these, let us first note that,
as said earlier, here we have a countable number of potentially overstable modes
(n = 1, 2 . . .), given by the Brunt–Väisälä relationship (22). Another difference is that
here the marginal curves are in the form of a bubble (figure 1a), while for the Bénard
layer with deformable surface they form an open ‘bag’, which is confined from the
side of short waves as well, but however has no left rounded zone. Rather, its upper
and lower branches approach a vertical asymptote at k = 0. From this point of view,
it looks reasonable that a lowest possible Rayleigh number exists, corresponding to
the bubble collapse. However no lower bound for the Galileo number has been found
in the surface-tension-gradient-driven problem with deformable surface, since as the
latter is decreased the right rounding zone of the bag simply moves to longer waves,
while preserving its topological shape.

5.3. Role of the air gap above the liquid

The oscillatory instability described by Sternling & Scriven (1959) and Reichenbach &
Linde (1981) is clearly due to the active role of the air, or more precisely, to the convec-
tive heat transport therein. Indeed, overstability is ruled out if the gas phase is assumed
passive, i.e. if heat transport is only accounted for by a Biot number (Vidal & Acrivos
1966). Yet, the order of magnitude of the critical Marangoni number and the value of
the frequency obtained by Reichenbach & Linde (1981) are about the same as in the
present study. The question then arises of which mechanism will first lead to instability.

First, note that as the thickness of the air gap above the liquid is decreased, the
critical Marangoni number rapidly increases, as can be shown for the case studied
by Reichenbach & Linde (1981). Indeed, as for the instability to exist it is necessary
that the conductive heat transport is not predominant with respect to the convective
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one, the thinner the air layer is, the higher should be the frequency (and relative
velocity amplitude) to maintain this balance, and thus, the higher should be the
critical Marangoni number.

On the other hand, for the Rayleigh–Marangoni instability analysed here, dimin-
ishing the air gap thickness does not lead to such drastic consequences. Indeed,
with a rather thin air gap (long-wave limit in the air layer), and moreover, with a
large gas-to-liquid ratio of thermal diffusivities (usually, about 102), heat transport
is mainly diffusive in the air gap. Then its description in terms of a Biot number
becomes appropriate, and a simple computation yields

Bi = δκ/δh

where δκ is the gas-to-liquid ratio of heat conductivities, and δh is the corresponding
ratio of layer depths. At the same time, poor heat conductivity of the air (δκ � 1)
permits moderate Biot numbers even for shallow air layers (δh � 1), so that the
critical Marangoni number and frequency remain of the same order as for Bi = 0.
For instance, if we assume δh = 1

10
(i.e. 1.4 mm air gap in the numerical example

(31)), while typically δκ = 1
20

, we get Bi = 0.5, a rather moderate value indeed.
In such conditions, our predicted instability is dominant relative to that found by
Reichenbach & Linde (1981).

As a side remark, note that the vertical temperature gradient needed for instability
does not necessarily come from a temperature difference between the rigid bottom of
the liquid layer and the rigid top of the overlying gas layer (in a closed set-up), as
implied above. For example, the liquid layer can be heated by means of surface heat
generation, as assumed by Levchenko & Chernyakov (1981). Then, due to the poor
heat conductivity of the air, almost all heat goes to the liquid layer, and thus, the role
of the air gap becomes negligible. Then, the Biot number can be set to zero.

5.4. Further remarks on the possible role of surface deformability

Let us now discuss the role of surface deformability in view of earlier findings
(Takashima 1981; Levchenko & Chernyakov 1981; Garcia-Ybarra & Velarde 1987;
Chu & Velarde 1988). First, figure 1 in Takashima’s (1981) paper shows that the
critical Marangoni number significantly grows with increasing static Bond number
Bs, and thus, with increasing liquid layer thickness. Moreover, the simultaneous
decrease of the capillary number Cr contributes to the further increase of the critical
Marangoni number. These features are well captured by the asymptotic result obtained
by Levchenko & Chernyakov (1981) for the critical Marangoni number

Mc =
Pr + Pr1/2

2Pr1/2 + 1
G. (34)

Equation (34) is valid if G � 1, where G is defined by (32). In most experiments
with Bénard layers, G is at least of order of 105. For water (ν = 10−2 cm2 s−1,
χ = 10−3 cm2 s−1), with h = 1 mm, G is about 105. Then, if h ∼ 1 cm, as for the standard
experiment earlier suggested, we get G ∼ 108, and according to (34), Mc ∼ 108,
thus much higher than the corresponding value in our Rayleigh–Marangoni case.
Moreover, Mc ∼ 108 is unrealistic for standard experiments on Marangoni convection.
Thus, this indicates that surface deformability has negligible role in the Rayleigh–
Marangoni problem treated here.

On the other hand, the Rayleigh–Marangoni instability mechanism described in
this work does not contribute to the overstability for liquid layers that are too shallow,
of order of 1 mm or less (the dynamic Bond number is too small). One can therefore
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conclude that the action of each of the two mechanisms is limited to a different
region of the parameter space of the problem, and the regions apparently do not
intersect.

Another asymptotic result for oscillatory Marangoni instability in a layer with
deformable open surface (Levchenko & Chernyakov 1981; Garcia-Ybarra & Velarde
1987; Chu & Velarde 1988) is (in our notation)

Mc = 7.93(PrG)3/4/B1/8
s (35)

with

kc =
√

5Bc . (36)

This result is valid for relatively thick liquid layers, much thicker than the capillary
length (i.e. Bs � 1), and G � 1. As seen from (36), the critical wavelength is
determined by this capillary length, and corresponds to a short-wave instability
(kc � 1). Due to the different powers of the Galileo number, (35) yields a lower
threshold for thick layers than (34), and an additional estimate is necessary. For
h ∼ 1 cm, ν ∼ 10−2 cm2 s−1, χ ∼ 10−3 cm2 s2, we have G ∼ 108. For simplicity

consider B
1/8
s ∼ 1 (although Bs � 1, the power 1

8
practically offsets it). Then (35)

yields Mc ∼ 107, which is still higher than the threshold in the Rayleigh–Marangoni
problem (Mc ∼ 3× 105).

If the above arguments are disregarded, and the problem is nevertheless formulated
to include, simultaneously, buoyancy and surface deformability, due care must be given
to consider possible consequences of this step, that may amount to the necessity of
using a non-Boussinesq approach. Indeed, this inevitably brings the Galileo number
into the problem, in addition to the Rayleigh number. Instead of R and G, the
independent parameters can be taken to be R and αβh = R/G. Then, on the one
hand, the Boussinesq approximation implies that the smallness parameter αβh can be
neglected everywhere, except for the buoyancy factor (i.e. the Rayleigh number here).
On the other hand, if buoyancy is studied in conjunction with surface deformability,
this parameter is brought back as independent. Therefore, to be consistent, it may be
necessary to go beyond the Boussinesq approximation by keeping the terms of order
αβh, associated with the thermal dependence of density, however small they might
be. Besides, if so, there is no reason to neglect effects due to the thermal variations
of other fluid properties (like viscosity).

Therefore, surface deformability is actually a non-Boussinesq correction (Davis &
Segel 1968). It is small, as argued above. However, the high (absolute) values of
the critical Rayleigh and Marangoni numbers (and as a consequence, temperature
difference) obtained here give rise to a question about other possible corrections,
and how strong they are. Apparently, most important of them are those that result
from the temperature dependence of viscosity (usually much stronger than that of
density), and the possible nonlinear profile of stratification. Surface deformability is
expected to be weaker, as it is closely related to the thermal variation of density.
Estimation of the latter, for our quantitative example (31), yields αβh ∼ 10−2, i.e.
quite small.

6. Weakly nonlinear analysis
To get further understanding on the nature of the transition from the rest state to

wave behaviour, we now consider the problem in a close vicinity of the oscillatory
instability threshold. As seen in figure 3(a), for a fixed B = R/M and at some critical
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M = Mc(B), a pair of complex-conjugate eigenvalues, λ = ±iωc, acquires a positive
real part. The corresponding critical wavenumber, kc, is finite, at least for values of B
which are neither too small nor too large (see also figure 2). Thus for waves expected
at M = Mc, we can write (at the leading order)

f(x, z, t) = A+ exp[i(kcx+ ωct)]Uc(z) + A− exp[i(kcx− ωct)]U∗c (z) + c.c. (37)

where c.c. and the star denote the complex conjugate. The quantity f stands for any
perturbation field, and fc for the corresponding component of the critical eigenvector,
while A+ and A− are amplitudes of left- and right-travelling waves respectively. For
simplicity, we restrict consideration to two-dimensional waves.

Using the scalings A± = ε1/2a±, M −Mc ∼ ε, it is possible to follow the time-
variation of the amplitudes on a slow scale, t1 = εt. At order ε1/2, we get the linear
problem, whose solution is just equation (37). At order ε, non-secular corrections
proportional to exp [i(±kcx±ωct)]× exp [i(±kcx±ωct)] are found, while at order ε3/2,
the cancellation of secular contributions yields the set of coupled Landau equations
(rewritten in terms of unscaled variables):

Ȧ+ = A+(σ0δ − α|A+|2 − β|A−|2),
Ȧ− = A−(σ∗0δ − α∗|A−|2 − β∗|A+|2),

}
(38)

where δ = (M−Mc)/Mc, the dot denotes derivative with respect to t, and σ0, α and β
are complex coefficients depending on the values of B, Pr and Bi. As the procedure
for calculating them is now classical (Normand et al. 1977; Knobloch 1986; Renardy
1993), we do not provide more details here but rather turn directly to the analysis of
results.

Apart from the basic state A+ = A− = 0 (unstable for σ0Rδ > 0), other fixed points
of (38) are travelling waves (TW) for which |A+|2 = σ0Rδ/αR, A− = 0 (corresponding
to left-TW, while the right-TW are given by |A−|2 = σ0Rδ/αR, A+ = 0), and standing
waves (SW) for which |A+|2 = |A−|2 = σ0Rδ/(αR + βR). Here the subscript R denotes
the real part. The imaginary parts of (38) account for corrections to the critical
frequency.

The linear stability analysis of these wave solutions yields that for 0 < αR < βR , the
TW are stable (respectively, SW are unstable), and for 0 < αR,−αR < βR < αR , the SW
are stable (respectively, TW are unstable). In all other cases, both waves are unstable,
and the system (38) blows up after finite time, indicating that higher-order terms must
be included in the Landau equations (38) to have nonlinear saturation. Typical values
of the coefficients σ0, α and β are provided in Table 1, for Pr = 0.1 and Pr = 6, and
in both cases for Bi = 0. Some values of B have been chosen in the vicinity of the
part of Nield’s marginal curve (see figure 3a) yielding the lowest instability threshold
(i.e. that corresponding to the optimal balance between buoyancy and surface tension
effects). Note that the normalization condition adopted for the critical eigenfunctions
is Tc(z = 1) = 1, which is responsible for the high numerical values of coefficients α
and β. It is seen that for all cases investigated, 0 < αR,−αR < βR < αR , and hence
SW is the only stable solution for δ > 0. It also appears that the frequency of SW
increases with increasing supercriticality δ. The data of table 1 also indicate that
the amplitude of surface temperature fluctuations is usually very small for moderate
δ, and rather unobservable in experiments. However, taking into account the large
absolute values of critical Marangoni and Rayleigh numbers, it can be calculated that
the velocity fluctuations and in particular the surface velocities are easily measurable
quantities.
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Pr B −Mc × 10−6 Kc ωc σ0 α× 10−6 β × 10−6

6 3 0.4116 1.506 1405 20.4 + 689i 4.64− 4.36i 0.80 + 3.83i

6 4 0.3236 1.888 1612 23.4 + 791i 3.50− 2.11i 1.08 + 2.68i

6 5 0.3330 2.287 2017 26.0 + 991i 3.80 + 0.28i 1.66 + 1.17i

0.1 5.2 0.1493 0.998 114.3 1.56 + 56.1i 0.373− 0.306i −0.0754 + 0.0714i

0.1 10 0.0554 1.501 116.4 2.12 + 56.8i 0.0759− 0.0079i −0.0280− 0.0481i

0.1 15 0.0693 1.986 184.2 2.45 + 90.4i 0.0901 + 0.325i −0.0574− 0.379i

Table 1. Critical parameters and coefficients of Landau equations for zero free surface Biot
number, and various Prandtl and dynamic Bond numbers.

7. Concluding remarks
It has been shown that a not too shallow Bénard layer may become oscillatorily

unstable when it is heated from above or cooled from below, due to the joint action
of buoyancy and thermocapillary effects. This result has been found when the liquid
layer is considered in the Boussinesq approximation and with undeformable open
surface. The critical (negative) Marangoni and (negative) Rayleigh numbers start
at rather high absolute values for moderate Prandtl number fluids (e.g. the lowest
possible absolute value of the Rayleigh number is 1.21× 106 for Pr = 6 and Bi = 0),
although achievable in standard experiments on low-viscosity liquids such as water.
The convective heat transport in the air gap overlying the liquid is negligible when the
air layer is relatively thin. Moreover, surface deformability is relevant only for thin,
say sub-millimetre, liquid layers, while the Rayleigh–Marangoni instability described
here is relevant for thicker layers in the centimetre range.

Marginal stability curves have been drawn, as Marangoni number versus wavenum-
ber curves, either at fixed negative Rayleigh number, or at fixed dynamic Bond num-
ber, which is the ratio of the Rayleigh and Marangoni numbers. In the first case,
the marginal curves have the form of a ‘bubble’ (figure 1a) enclosing the region of
instability. The bubble size and shape crucially depend on the fixed Rayleigh number.
As the Rayleigh number is increased (in absolute value), the bubble grows and rises
to higher (absolute) values of the Marangoni number. In the second (more intuitive)
case, the marginal curves have the usual, single-valued form (figure 2a). As the Bond
number is increased, the minimum shifts from long to short waves. There exists
an optimal Bond number (that in each particular case yields the optimal thickness
of the liquid layer), for which the critical Marangoni number is lowest in absolute
value. This corresponds to the optimal balance between buoyancy in the bulk and the
Marangoni stress at the open surface, leading to instability. The instability threshold
increases with the increase of Prandtl and Biot numbers.

An asymptotic analysis in the limit of high Marangoni and Rayleigh numbers (in
absolute value) revealed that the oscillatory instability can be associated with two
(high-frequency) wave modes: internal waves and surface waves. The first of them
corresponds to the (Brunt–Väisälä) internal wave in a stably stratified liquid layer,
while the second is the dilational or longitudinal surface wave appearing as a result
of the Marangoni effect, hence corresponding to genuinely dissipative waves. It has
been shown that the upper and lower branches of the bubble (figure 1a) tend to the
marginal curves for the surface and internal waves, respectively. A countable number
of bubbles (corresponding to different vertical wavenumbers n = 1, 2 . . .) exists. It has
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also been shown that the marginal curves at fixed dynamic Bond number (figure 2)
always have vertical asymptotes, i.e. the interval of unstable wavenumbers remains
finite for high Marangoni numbers (in absolute value). The branches of a given
marginal curve adjacent to the left and right asymptotes correspond to internal and
surface waves, respectively. The study of the resonance between these waves yields
that, as we approach resonance, there is a smooth transition from the internal mode
to the surface one and vice versa, and hence there is mode-mixing. Finally, a weakly
nonlinear analysis showed that the bifurcation is supercritical and to standing (rather
than traveling) waves.
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